A Sort-jacobi Algorithm on Semisimple Lie Algebras
نویسنده
چکیده
A structure preserving Sort-Jacobi algorithm for computing eigenvalues or singular values is presented. The proposed method applies to an arbitrary semisimple Lie algebra on its (−1)-eigenspace of the Cartan involution. Local quadratic convergence for arbitrary cyclic schemes is shown for the regular case. The proposed method is independent of the representation of the underlying Lie algebra and generalizes well-known normal form problems such as the symmetric, Hermitian, skew-symmetric, symmetric and skew-symmetric R-Hamiltonian eigenvalue problem and the singular value decomposition. Due to the well-known classification of semisimple Lie algebras, the approach yields structure-preserving Jacobi eigenvalue methods for so far unstudied problems as Takagi’s and a Takagi-like factorization, the Hermitian quaternion, the Hermitian C-Hamiltonian eigenvalue decomposition and a symplectic singular value decomposition. The algorithm is exemplified for an exceptional Lie algebra.
منابع مشابه
Semisimple Lie Algebras and the Root Space Decomposition
That it is a Lie homomorphism is precisely the statement of the Jacobi identity. Another exact restatement of the Jacobi identity is contained in the fact that ad takes values in the subalgebra Der(g) of derivations. The notion of a Lie algebra is meant to be an abstraction of the additive commutators of associative algebras. While lie algebras are almost never associative as algebras, they hav...
متن کاملJacobi's Algorithm on Compact Lie Algebras
A generalization of the cyclic Jacobi algorithm is proposed that works in an arbitrary compact Lie algebra. This allows, in particular, a unified treatment of Jacobi algorithms on different classes of matrices, such as, e.g., skew-symmetric or skew-Hermitian Hamiltonian matrices. Wildberger has established global, linear convergence of the algorithm for the classical Jacobi method on compact Li...
متن کاملRepresentation theory of Lie algebras
In these notes, we give a brief overview of the (finite dimensional) representation theory of finite dimensional semisimple Lie algebras. We first study the example of sl2(C) and then provide the general (additive) theory, along with an analysis of the representations of sl3(C). In the last section, we have a look at the multiplicative structure of the representation ring, discussing examples f...
متن کاملLecture 5: Semisimple Lie Algebras over C
In this lecture I will explain the classification of finite dimensional semisimple Lie algebras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially d...
متن کاملGradient Flows, Convexity, and Adjoint Orbits
This dissertation studies some matrix results and gives their generalizations in the context of semisimple Lie groups. The adjoint orbit is the primary object in our study. The dissertation consists of four chapters. Chapter 1 is a brief introduction about the interplay between matrix theory and Lie theory. In Chapter 2 we introduce some structure theory of semisimple Lie groups and Lie algebra...
متن کامل